Clustered Supernovae

Eric Gentry
with Mark Krumholz, Avishai Dekel, Piero Madau

6 May 2016 --- UCSC
Big picture

- Feedback is important

\[\Sigma_{\text{gas}} [M_\odot \text{ pc}^{-2}] \]
Big picture

• Feedback is important

• Feedback not fully understood

TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS

Oscar Agertz1,2, Andrey V. Kravtsov1,2,3, Samuel N. Leitner1,2,4, and Nickolay Y. Gnedin1,2,5

Recall that the wind and SN momenta in Figure 4 refer to the initial \textit{ejecta} momentum and not any late stage momentum generated by an expanding bubble. The momentum expected from the ideal adiabatic S-T phase (Equation (12)) is greater than radiation pressure momentum even in the case of a supermassive ($M_{\text{cl}} = 10^6 M_\odot$) star cluster. However, as we argued above, it is not clear whether the S-T solution is applicable in the highly inhomogeneous density field of GMCs, especially if gas around young star clusters is partially cleared by early feedback.
Big picture

• Feedback is important

• Feedback not fully understood

• Developed better momentum-driven SN feedback model
Outline

Goal: momentum-driven feedback model of clustered SNe

- Background
- Numerics
- Results
- Implications
Outline

Goal: momentum-driven feedback model of clustered SNe

• Background
• Numerics
• Results
• Implications
Momentum-Driven Clustered Supernova Feedback
Momentum-Driven Clustered Supernova Feedback
Why Feedback?

Get wrong answers without feedback
Why Feedback?

Morphology

Get wrong answers without feedback

No Feedback

With Feedback

\[\Sigma_{\text{gas}} \left[M_{\odot} \text{pc}^{-2} \right] \]
Why Feedback?
Star Formation Rate

Get wrong answers without feedback

![Graph showing Star Formation Rate over time with different feedback scenarios.](image)
Why Feedback?
Kennicutt-Schmidt relation

Get wrong answers without feedback

No Feedback

With Feedback

Hopkins+11
Why Feedback?
Kennicutt-Schmidt relation

Get wrong answers without feedback

No Feedback

With Feedback

\[
\log_{10}(\Sigma_{SFR}) \left[\frac{M_\odot}{yr^{-1} \text{kpc}^2} \right]
\]

\[
\log_{10}(\Sigma_{\text{gas}}) \left[\frac{M_\odot}{\text{pc}^2} \right]
\]

Hopkins+11
Why Feedback?
Galactic Winds

Get wrong answers without feedback

Full stellar feedback

Just rad. pressure

$T < 10^3 \text{K}$

$10^4 \text{K} < T < 10^5 \text{K}$

$10^6 \text{K} < T$

Hopkins+12; (Dekel & Silk 1986)
Why Feedback? Cusp-core problem

Get wrong answers without feedback

Dark matter dynamically heated by SN shocks

Mashchenko+06; (Governato+2012)
Why Feedback?

Get wrong answers without feedback
Momentum-Driven Clustered Supernova Feedback
Why SN Feedback?

Sudden shocks can affect CDM (Mashchenko+06)

![Graph showing dark matter density over radius, with initial and final states labeled as 'cusp' and 'core' respectively. The graph indicates dark matter dynamically heated by SN shocks.]
Why SN Feedback?

Sudden shocks can affect CDM (Mashchenko+06)

Key source of turbulence (Agertz+12)
Why SN Feedback?

Sudden shocks can affect CDM (Mashchenko+06)

Key source of turbulence (Agertz+12)

Could unbind gas in dwarf galaxies (Dekel & Silk+86)
Why SN Feedback?

Sudden shocks can affect CDM (Mashchenko+06)

Key source of turbulence (Agertz+12)

Could unbind gas in dwarf galaxies (Dekel&Silk+86)

SNe are difficult to simulate at low resolutions
\[(t - t_{SN}) = 0.00 \times 10^0 \text{ yr}\]

\[\rho \left[\frac{\text{g cm}^{-3}}{} \right]\]

\[R \left[\text{pc} \right]\]

\[E_{\text{R, tot}} \left[\text{ergs} \right]\]

\[V \left[\text{km s}^{-1} \right]\]

\[p \left[\frac{\rho}{100M_{\odot}N_{\text{SN}}} \right]\]

\[t \left[\text{Myr} \right]\]

Gentry+16 (in prep.)
\((t - t_{SN}) = 3, 14 \times 10^4 \text{ yr} \)

\[\rho \left[\text{g cm}^{-3} \right] \]

- **numeric**
- **analytic (no cooling)**

\[R \left[\text{pc} \right] \]

\[t \left[\text{Myr} \right] \]

\[E_{R, \text{tot}} \left[\text{ergs} \right] \]

\[\frac{\rho}{100 M_{\odot} N_{SN}} \left[\text{km s}^{-1} \right] \]

Gentry+16 (in prep.)
\[(t - t_{SN}) = 3, 14 \times 10^4 \text{ yr}\]
\[(t - t_{SN}) = 3, 16 \times 10^6 \text{ yr}\]
$(t - t_{SN}) = 3, 16 \times 10^6 \text{ yr}$

\[\rho [\text{g cm}^{-3}] \]

\[R [\text{pc}] \]

- **numeric**
- **analytic (no cooling)**

\[E_{R_{\text{tot}}} [\text{ergs}] \]

\[p \left(\frac{100 M_{\odot}}{N_{\text{SN}}} \right) \]

\[t [\text{Myr}] \]

Gentry+16 (in prep.)
\[(t - t_{SN}) = 1.87 \times 10^8 \text{ yr}\]

Gentry+16 (in prep.)
Thin Shell Determines SNR Evolution (SNe difficult for low res. simulations)

\[(t - t_{SN}) = 3.38 \times 10^6 \text{ yr} \]

Gentry+16 (in prep.)
Momentum-Driven Clustered Supernova Feedback
Momentum-Driven Clustered Supernova Feedback
Why Momentum-Driven Feedback?

Turbulent support dominates in disks

(Hydro simulation: slab geometry, midplane values plotted)
Why *Momentum-Driven* Feedback?

Turbulent support dominates in disks

SNR has asymptotic momentum, but not energy

Momentum

Energy

\[p/(100M_\odot N_{\text{SNR}}) \text{ [km s}^{-1}\text{]} \]

\[E_{R,\text{tot}} \text{ [ergs]} \]

Gentry+16 (in prep.)
Momentum-Driven Clustered Supernova Feedback
Momentum-Driven Clustered Supernova Feedback
Isolated SN feedback

We know its momentum yield in a homogeneous ISM

\[\frac{p}{N_{\text{SN}e}} \propto \rho^{-1/7} \]

Cioffi+98
Isolated SN feedback

We know its momentum yield in a homogeneous ISM

We know pre-SN inhomogeneities aren’t significant

Walch&Naab+2015
Isolated SN feedback

We know its momentum yield in a homogeneous ISM

We know pre-SN inhomogeneities aren’t significant

Authors can’t agree if multiple SNe change things
Clustered SNe Possibilities

- Lower density background: get more momentum?

Momentum $\propto \text{density}^{-1/7}$
Clustered SNe Possibilities

- Lower density background: get more momentum?

\[\text{Momentum} \propto \text{density}^{-1/7} \]

Wolf Rayet star

X-rays
Optical
IR

N44 Bubble

Radius [pc]
Density [g cm\(^{-3}\)]

\((t - t_{SN}) = 3.38 \times 10^6\ \text{yr}\)

\(\text{numeric}\)
Clustered SNe Possibilities

• Lower density background: get more momentum?

• Adiabatic superbubbles create momentum less efficiently as energy increases

\[E \sim \frac{p^2}{m} \]

\[p \sim \sqrt{E \times m} \]

\[\frac{p}{N} \sim \sqrt{E_0 \times \frac{m}{N}} \]

Castor+75
Castor+77
Chevalier&Clegg+85
Sharma+14
Clustered SNe Possibilities

• Lower density background: get more momentum?

• Adiabatic superbubbles create momentum less efficiently as energy increases
Clustered SNe Possibilities

• Lower density background: get more momentum?

• Adiabatic superbubbles create momentum less efficiently as energy increases

Let’s just simulate it directly
Outline

Goal: momentum-driven feedback model of clustered SNe

• Background

• Numerics

• Results

• Implications
Outline

Goal: momentum-driven feedback model of clustered SNe

• Background
• Numerics
• Results
• Implications
Code Overview (Physics)

- Uniform initial conditions
Code Overview (Physics)

- Uniform initial conditions
- SNe winds + blasts added to central zone

\[\text{Radius [pc]} \]
\[\text{Density [g cm}^{-3}\text{]} \]

\[(t - t_{SN}) = 0.00 \times 10^0 \text{ yr} \]
Code Overview (Physics)

- Uniform initial conditions
- SNe winds + blasts added to central zone

![Graph showing density vs. radius with a time difference notation \((t - t_{SN}) = 3.38 \times 10^6 \text{ yr}\).]
Code Overview (Physics)

- Uniform initial conditions
- SNe winds + blasts added to central zone
- 1D
Code Overview (Physics)

- Uniform initial conditions
- SNe winds + blasts added to central zone
- 1D, Lagrangian
Code Overview (Physics)

• Uniform initial conditions
• SNe winds + blasts added to central zone
• 1D, Lagrangian, Finite Volume (Toro+94; Duffel+16)

\[(t - t_{SN}) = 3.38 \times 10^6 \text{ yr} \]

[Graph showing density vs. radius with a strong shock indicated]
Code Overview
(Physics)

• Uniform initial conditions
• SNe winds + blasts added to central zone
• 1D, *Lagrangian*, Finite Volume (Toro+94; Duffel+16)
• Cooling (*Grackle*)
Code Overview (Astrophysics)

Code Overview
(Astrophysics)

• Stochastically draw Kroupa (2002) IMF using SLUG2 (da Silva+12, Krumholz+15)

• Get lifetimes by Geneva tracks (Ekström+2012)
Code Overview
(Astrophysics)

• Stochastically draw Kroupa (2002) IMF using SLUG2 (da Silva+12, Krumholz+15)
• Get lifetimes by Geneva tracks (Ekström+2012)
• Add ejecta mass + metals (Woosley&Heger+07)
Code Overview (Astrophysics)

- Get lifetimes by Geneva tracks (Ekström+2012)
- Add ejecta mass + metals (Woosley&Heger+07)

- Evolved for until momentum reaches a maximum

Also tested additional physics!
Code in Action: 3 SNe
\[(t - t_{\text{first,SN}}) = 0.00 \times 10^0 \text{ yr} \]

Gentry+16 (in prep.)
\[(t - t_{\text{first \, SN}}) = 0.00 \times 10^0 \, \text{yr} \]

Code in Action: 1000 SNe
\[(t - t_{\text{first SN}}) = 0.00 \times 10^0 \text{ yr} \]

Gentry+16 (in prep.)
Parameter Study

• Density
 • \(\rho = 10^{-3} - 10^2 \ m_H \ \text{cm}^{-3} \) (6 steps)

• Metallicity
 • \(Z = 10^{-3} - 10^{0.5} \ Z_\odot \) (7 steps)

• Cluster Mass
 • \(M = 10^2 - 10^5 \ M_\odot \) \((N_{\text{SNe}} \approx 1 - 1000) \) (5 steps)
 • \(\approx 1 \ \text{SN} / 100 \ M_\odot \)
Goal: momentum-driven feedback model of clustered SNe

- Background
- Numerics
- Results
- Implications
Outline

Goal: momentum-driven feedback model of clustered SNe

• Background
• Numerics
• Results
• Implications
Results Overview

• Ran ~ 700 simulations

• Varied density, metalliccity, number of SNe

• We’ll focus on N_{SNe}
Scaling with N_{SNe}

\[\text{density} = 1.33 \times 10^{-3} \, m_p \, \text{cm}^{-3} \]

\[Z = 10^0 \, Z_\odot \]

Gentry+16 (in prep.)
Scaling with N_{SNe}

$p/(100\, M_{\odot} \, N_{\text{SNe}}) \, [\text{km s}^{-1}]$

$\rho = 1.33 \times 10^{-2} \, m_p \, \text{cm}^{-3}$

$Z = 10^0 \, Z_{\odot}$

Gentry+16 (in prep.)
Scaling with N_{SNe}

Density $= 1.33 \times 10^{-1} \, m_p \, \text{cm}^{-3}$

$Z = 10^0 \, Z_\odot$

Gentry+16 (in prep.)
Scaling with N_{SNe}

$\rho / (10^2 M_\odot N_{\text{SNe}}) [\text{km s}^{-1}]$

N_{SNe}

density = $1.33 \times 10^0 m_p \text{ cm}^{-3}$

$Z = 10^0 Z_\odot$

Gentry+16 (in prep.)
How about 2 power laws?

Gentry+16 (in prep.)
How about 2 power laws?

\[
\frac{p}{N_{SN e}}(\text{in prep.}) = \left(\frac{N_{SN e}}{1000}\right)^b \times \rho_k \times Z_i \times (\frac{N_{SN e}}{1000})^c \times (\frac{N_{SN e}}{1000})^d
\]
How about 2 power laws?

\[
\frac{p}{N_{\text{SN}}^0, \text{many}} \times Z^{a_2} \times \rho^{b_2} \times \left(\frac{N_{\text{SN}}}{1000} \right)^{c_2}
\]

\[
f(y_1, y_2) = \frac{y_1 y_2}{y_1 + y_2}
\]

\[
\frac{p}{N_{\text{SN}}^0, \text{few}} \times Z^{a_1} \times \rho^{b_1} \times \left(\frac{N_{\text{SN}}}{1} \right)^{c_1}
\]

Gentry+16 (in prep.)
Constrained Model

Likelihood: Gaussian

Priors: non-informative-ish

Gentry+16 (in prep.)
What’s going on?
What’s going on?

SNR Regime

Each SN is lower density background

$p/(100 \ M_\odot N_{SNe})$ [km s$^{-1}$]

N_{SNe}

Gentry+16 (in prep.)
\((t - t_{\text{first.SN}}) = 0.00 \times 10^0 \text{ yr}\)
$(t - t_{\text{first SN}}) = 0.00 \times 10^0 \text{ yr}$

$\rho \left[\text{g cm}^{-3} \right]$ vs $R \left[\text{pc} \right]$ and $E_{R, \text{tot}} \left[\text{ergs} \right]$ vs $t \left[\text{Myr} \right]$

$\frac{p}{100 M_\odot N_{\text{SN}}}$ vs $t \left[\text{Myr} \right]$

Gentry+16 (in prep.)
\((t - t_{\text{first SN}}) = 9.10 \times 10^5 \text{ yr} \)
\((t - t_{\text{first}, \SN}) = 1.24 \times 10^6 \text{ yr} \)

\(\rho \) [g cm\(^{-3}\)]

\(t \) [Myr]

\(R \) [pc]

\(E_{R, \text{tot}} \) [ergs]
$\left(t - t_{\text{first. SN}}\right) = 1.09 \times 10^7 \text{ yr}$

Gentry+16 (in prep.)
\[(t - t_{\text{first. SN}}) = 1.13 \times 10^7 \text{ yr}\]
\((t - t_{\text{first SN}}) = 5.01 \times 10^7 \text{ yr}\)
What’s going on?
SNR Regime

Each SN is lower density background

\[\frac{p}{(100 \, M_\odot \, N_{SNe})} \, [\text{km s}^{-1}] \]

- Model
- Ostriker & Shetty (2011)
- Simulations

Gentry+16 (in prep.)
What’s going on?
Superbubble Regime

$\frac{p}{(100 \, M_\odot \, N_{\text{SNe}})}$ [km s$^{-1}$]

- Model
- Ostriker & Shetty (2011)
- Simulations

Gentry+16 (in prep.)
\((t - t_{\text{first SN}}) = 0.00 \times 10^0 \text{ yr}\)

\(\rho [\text{g cm}^{-3}]\)

\(R [\text{pc}]\)

\(E_{R, \text{tot}} [\text{ergs}]\)

\(\frac{\rho}{100M_{\odot}} \text{N}_{\text{SNe}} [\text{km s}^{-1}]\)

Gentry+16 (in prep.)
\((t - t_{\text{first SN}}) = 0.00 \times 10^0 \text{ yr} \)
\[(t - t_{\text{first SN}}) = 3.15 \times 10^7 \text{ yr} \]

\[\rho \left[\text{g cm}^{-3} \right] \]

\[E_{R, \text{tot}} \left[\text{ergs} \right] \]

\[\frac{\rho}{100 M_{\odot} N_{\text{SN}} \text{ km s}^{-1}} \]

\[R \left[\text{pc} \right] \]

\[t \left[\text{Myr} \right] \]

Gentry+16 (in prep.)
\((t - t_{\text{first SN}}) = 3.96 \times 10^7 \text{ yr} \)

Gentry+16 (in prep.)
What's going on? Superbubble Regime

Depends on swept-up mass

\(p/(100 \, M_\odot \, N_{SNe}) \) [km s\(^{-1}\)]

Gentry+16 (in prep.)
What’s going on?
Superbubble Regime

$E \sim p^2 / m$

$\frac{p}{(100 \, M_\odot \, N_{SNe})} \, [\text{km} \, \text{s}^{-1}]$

N_{SNe}

Depends on swept-up mass

Gentry+16 (in prep.)
What’s going on? Superbubble Regime

Depends on swept-up mass

\[E \sim p^2 / m \]

\[p \sim \sqrt{E \times m} \]
What’s going on?
Superbubble Regime

\[E \sim \frac{p^2}{m} \]

\[p \sim \sqrt{E \times m} \]

\[p \sim \sqrt{E_0 N m} \]

Depends on swept-up mass

\[p \sim \frac{E}{\sqrt{m}} \]

\[E \sim \frac{p^2}{m} \]

Gentry+16 (in prep.)
What’s going on? Superbubble Regime

\[E \sim p^2 / m \]
\[p \sim \sqrt{E \times m} \]
\[p \sim \sqrt{E_0 N m} \]
\[p / N \sim \sqrt{E_0 m / N} \]
What’s going on? Superbubble Regime

\[(t - t_{\text{first SN}}) = 0.00 \times 10^0 \, \text{yr} \]

\[p \sim E \times m \]

\[p \sim \sqrt{E_0 N m} \]

\[p/N \sim \sqrt{E_0 m/N} \]

\[m/N \propto N^{-0.4} \]

Gentry+16 (in prep.) Castor+75
What’s going on?
Superbubble Regime

\(\rho \sim E \times m \)
\(p \sim \sqrt{E} \times m \)
\(\frac{p}{N} \sim \sqrt{E_0 N} \times m \)
\(\frac{m}{N} \propto N^{-0.4} \)
\(\frac{p}{N} \sim N^{-0.2} \)
What’s going on?
Superbubble Regime

\((t - t_{\text{first SN}}) = 3.96 \times 10^7 \text{ yr} \)

\begin{align*}
\rho & \sim E \times m \\
p & \sim \sqrt{E} \times m \\
p & \sim \sqrt{E_0 N} \times m \\
p/N & \sim \sqrt{E_0 \frac{m}{N}} \\
m/N & \propto N^{-0.4 (1 - \frac{1}{\gamma})} \\
\frac{p}{N} & \sim N^{-0.2 (1 - \frac{1}{\gamma})}
\end{align*}

Gentry+16 (in prep.)
What’s going on?
Superbubble Regime

Predicted:
\[\frac{p}{N} \sim N^{-0.08} \]

Data:
\[\frac{p}{N} \sim N^{-0.07 \pm 0.02} \]
Results: summary

- Each SN is lower density background
- Depends on swept-up mass

![Graph showing the relationship between $p/(100 M_\odot N_{SN_e})$ [km s$^{-1}$] and N_{SN_e} with model and simulations data points.]

Gentry+16 (in prep.)
Outline

Goal: momentum-driven feedback model of clustered SNe

• Background
• Numerics
• Results
• Implications
Goal: momentum-driven feedback model of clustered SNe

• Background
• Numerics
• Results
• Implications
More momentum than expected!

Peak: 30,000
Expected: 3,000
More momentum than expected!

Peak: 30,000

Expected: 3,000

\[
\frac{dN_{\text{cluster}}}{dM_{\text{cluster}}} \propto M^{-2}
\]

\[
\frac{dN_{\text{cluster}}}{dN_{\text{SNe}}} \propto N_{\text{SNe}}^{-2}
\]

\[
\frac{dN_{\text{cluster}}}{d \log N_{\text{SNe}}} \propto N_{\text{SNe}}^{-1}
\]

\[
\langle N_{\text{SNe}} \rangle = 6
\]

\[
\frac{p}{\langle N_{\text{SNe}} \rangle} = 25,000 \pm 1,000 \frac{100 M_{\odot} \text{ km}}{s}
\]
Why has this gone unnoticed?

Previous: 3,000
Now: 25,000
Previous studies didn’t find it

Kim & Ostriker + 15

$p/100 M_\odot N_{\text{SN(e)}}$ [km s$^{-1}$]

t [Myr]

3D + Low res (2.5 pc)

1D + Lagrangian + High res. (0.06 pc)

Gentry + 16 (in prep.)
Why has this gone unnoticed?
Can’t explain by 3D vs 1D

Yadav+16 (submitted)
Why has this gone unnoticed? Previous studies underresolved.

\[\frac{p}{100 \, M_\odot \, N_{\text{SN}} } \] [km s\(^{-1}\)]

- 3D + Low res (2.5 pc)

- 1D

\[\frac{p}{100 \, M_\odot \, N_{\text{SN}} } \] [km s\(^{-1}\)]

Gentry+16 (in prep.)
Low resolution leads to overcooling

Eulerian (2.5 pc)

Lagrangian (0.06 pc)

Gentry+16 (in prep.)
Low resolution leads to overcooling

Eulerian (2.5 pc)
Lagrangian (0.06 pc)
Implications for galactic models

\[\eta_{\text{turb}} = \frac{F'}{2\sqrt{2}\phi} f_{\text{out}} \left(\frac{P_*}{m_*} \right) \sigma_T^{-1} \]

\[\approx 10^2 \frac{F'}{\phi} f_{\text{out}} \left(\frac{P_*/m_*}{3000 \text{ km s}^{-1}} \right) \left(\frac{\sigma_T}{10 \text{ km s}^{-1}} \right)^{-1} \] \hspace{1cm} (30)

\[\eta_{\text{turb}} = \frac{F'}{2Q_{\text{turb}}\phi} f_{\text{out}} \left(\frac{P_*}{m_*} \right) \left(f_g v_{c,\text{gal}} \right)^{-1} \]

\[\approx 15 \frac{F'}{Q_{\text{turb}}\phi} f_{\text{out}} \left(\frac{P_*/m_*}{3000 \text{ km s}^{-1}} \right) \]

\[\times \left(\frac{f_g v_{c,\text{gal}}}{100 \text{ km s}^{-1}} \right)^{-1} \] \hspace{1cm} (33)

Hayward&Hopkins+16 (submitted)
Implications for Galaxy Formation

\[\eta_{\text{turb}} = \frac{\mathcal{F}'}{2Q_{\text{turb}} \phi} f_{\text{out}} \left(\frac{P_*}{m_*} \right) (f_g v_{c,\text{gal}})^{-1} \]

\[\approx 15 \frac{\mathcal{F}'}{Q_{\text{turb}} \phi} f_{\text{out}} \left(\frac{P_*/m_*}{3000 \text{ km s}^{-1}} \right) \]

\[\times \left(\frac{f_g v_{c,\text{gal}}}{100 \text{ km s}^{-1}} \right)^{-1}. \]
Future Directions

• Simple predictions for effects on galactic evolution
Future Directions

• Simple predictions for effects on galactic evolution

• 3D disk blowout

Mac Low+89
Future Directions

• Simple predictions for effects on galactic evolution

• 3D simulations: disk blowout

• Galactic/cosmological simulations (self-consistent)
Conclusions
Conclusions

• Previous studies unresolved
Conclusions

• Previous studies unresolved
• SN momentum $\sim 8 \times$ stronger than thought

![Graph showing SN momentum versus number of SNe]
Additional Slides
Other stellar feedback: Pre-SN HII Regions

Ionizing radiation from massive stars creates HII regions.

HII regions expand, adding momentum and decreasing the gas density.

This directly adds momentum:
• $p_{HII} \lesssim 50\% p_{SNe}$

This changes effective density:
• Changes momentum by a few percent.
Other stellar feedback: Type Ia SNe

Type Ia SNe can have an impact,
But that impact is smaller than the model’s uncertainties
Constructing our model

- Data looks like two powerlaws: small-N and large-N
Constructing our model

• Data looks like two powerlaws: small-N and large-N

\[
\left(\frac{p}{N_{SNe}} \right)_{few} = \left(\frac{p}{N} \right)_{0,few} \times Z^{a_1} \times \rho^{b_1} \times \left(\frac{N_{SNe}}{1} \right)^{c_1}
\]

\[
\left(\frac{p}{N_{SNe}} \right)_{many} = \left(\frac{p}{N} \right)_{0,many} \times Z^{a_2} \times \rho^{b_2} \times \left(\frac{N_{SNe}}{10^3} \right)^{c_2}
\]
Constructing our model

• Data looks like two powerlaws: small-N and large-N

\[
\frac{p}{N_{SNNe}}_{few} = \left(\frac{p}{N}\right)_{0,few} \times Z^{a_1} \times \rho^{b_1} \times \left(\frac{N_{SNNe}}{1}\right)^{c_1}
\]

\[
\frac{p}{N_{SNNe}}_{many} = \left(\frac{p}{N}\right)_{0,many} \times Z^{a_2} \times \rho^{b_2} \times \left(\frac{N_{SNNe}}{10^3}\right)^{c_2}
\]

\[
\frac{p}{N_{SNNe}} = \frac{\left(\frac{p}{N_{SNNe}}\right)_{few} \times \left(\frac{p}{N_{SNNe}}\right)_{many}}{\left(\frac{p}{N_{SNNe}}\right)_{few} + \left(\frac{p}{N_{SNNe}}\right)_{many}}
\]

\[
\frac{p}{N_{SNNe}} \approx \min\left[\left(\frac{p}{N_{SNNe}}\right)_{few}, \left(\frac{p}{N_{SNNe}}\right)_{many}\right]
\]
Maximum Likelihood Estimate

\[\frac{p}{N} \approx \min\left[\frac{p}{N}_{\text{few}}, \quad \frac{p}{N}_{\text{many}} \right] \]
Maximum Likelihood Estimate

\[\frac{p}{N} \approx \min\left(\frac{p}{N}_{\text{few}}, \quad \frac{p}{N}_{\text{many}}\right) \]
Constructing our model, $y(x)$: Predicting uncertainty?

- MLE assumed a Gaussian likelihood with variance $= \sigma^2$
 - Gives uncertainties, if model parameters perfectly known
 - And the MLE gives no information on σ

- Need Bayesian inference for uncertainties of model parameters
 - This requires a prior, $\pi(\theta)$
 \[
 \pi(\log \sigma^2, \log(p/N)_{0,\text{few}}, \log(p/N)_{0,\text{many}}, a_1, a_2, b_1, b_2, c_1, c_2) \propto 1
 \]
Constructing our model, $y(x)$: Predicting uncertainty?

- MLE assumed a Gaussian likelihood with variance $= \sigma^2$
 - Gives uncertainties, if model parameters perfectly known
 - And the MLE gives no information on σ

- Need Bayesian inference for uncertainties of model parameters
 - This requires a prior, $\pi(\theta)$
 - This lets us find the posterior $p(\theta|y, x) \propto p(y|\theta, x) \times \pi(\theta)$
Constructing our model, $y(x)$: Predicting uncertainty?

- MLE assumed a Gaussian likelihood with variance $= \sigma^2$
 - Gives uncertainties, if model parameters perfectly known
 - And the MLE gives no information on σ

- Need Bayesian inference for uncertainties of model parameters
 - This requires a prior, $\pi(\theta)$
 - This lets us find the posterior $p(\theta|y, x) \propto p(y|\theta, x) \times \pi(\theta)$
 - Then we can find predictive (with uncertainties!):
 $$p(y^*|y, x) = \int p(y|\theta, x) \times p(\theta|y, x) \, d\theta$$
Bayesian Predictive

\[p(y^*|y, x) = \int p(y|\theta, x) \times p(\theta|y, x) \, d\theta \]
Bayesian Predictive

\[p(y^*|y, x) = \int p(y|\theta, x) \times p(\theta|y, x) \, d\theta \]
Bayesian Predictive
What do we gain?
30 Doradus: \(\mathcal{O}(1000) \) OB stars
Existence proof: N44 Superbubble

Wolf Rayet star

X-rays
Optical
IR

180 pc
\(\mathcal{N} \)

\(\mathcal{E}_{\text{kin}} \)

\(Z/Z_\odot \)

\(E_{\text{kin}}/N \times 10^{51} \text{ ergs} \)

\(N_{\text{SNNe}} \)
What’s going on?
SNR Regime

Gentry+16 (in prep.)
What’s going on?
SNR Regime

\[N_{\text{SNe}} = 3 \quad (N_{\text{simulations}} = 51), \]

- blue: simulation results
- green: simple model
- red: complex model

Gentry+16 (in prep.)
What’s going on?
SNR Regime

Gentry+16 (in prep.)
What’s going on?
SNR Regime

Gentry+16 (in prep.)
Superbubble: Predicted Scaling at Last SN

\[
p/100 \, \text{M}_\odot \sim N_{\text{SNe}}^{-0.2}
\]

Simulations
Superbubble: Predicted Scaling at end
Need high resolution (or Lagrangian methods)

\[\frac{p}{100 M_\odot N_{SN_e}} \text{ [km s}^{-1}] \]
Need high resolution (or Lagrangian methods)

\[\frac{p}{100 \, M_{\odot} \cdot N_{SNe}} \quad [\text{km s}^{-1}] \]

Keller+14